
Journal of Global Optimization 24: 149–161, 2002. 149
 2002 Kluwer Academic Publishers. Printed in the Netherlands.

Fast Algorithm for the Cutting Angle Method of
Global Optimization

1 2L.M. BATTEN and G. BELIAKOV
1School of Computing and Mathematics, Deakin University, 221 Burwood Hwy, Burwood 3125,
Australia; Tel.: 1 61-3-9251-7474; Fax: 1 61-3-9251-7604; E-mail: lmbatten@deakin.edu.au
2School of Computing and Mathematics, Deakin University, 221 Burwood Hwy, Burwood 3125,
Australia; Tel.: 1 61-3-9251-7475; Fax: 1 61-3-9251-7604; E-mail: gleb@deakin.edu.au

Abstract. The cutting angle method for global optimization was proposed in 1999 by
Andramonov et al. (Appl. Math. Lett. 12 (1999) 95). Computer implementation of the resulting
algorithm indicates that running time could be improved with appropriate modifications to the
underlying mathematical description. In this article, we describe the initial algorithm and introduce
a new one which we prove is significantly faster at each stage. Results of numerical experiments
performed on a Pentium III 750 Mhz processor are presented.

1. Introduction

Global optimization algorithms have been the subject of a great deal of interest in
past years [5, 6, 11, 13]. With ever increasing computational speeds available, hope
is growing that some long-standing difficult problems can be tackled using such
algorithms. For example, the protein folding problem [5, 8] the phase problem in
X-ray crystallography [7].

The cutting angle method for global optimization was proposed in 1999 in a
series of articles by Rubinov et al. [1, 11, 12] and has subsequently been improved
by these same authors in [2, 4, 11]. This paper focuses on the computer
implementation of the algorithm as described in [2, 11]. We prove that a different
approach to that implementation results in a new algorithm with significant
improvement in running time. At the end of the paper we present comparative
results on the execution time of both algorithms.

The cutting angle method is a deterministic optimisation method for Lipschitz
nfunctions in R [11]. A sequence of saw-tooth auxiliary functions, which under-

estimates the objective function, is built based on the support vectors for the given
Lipschitz function. Thus, the Lipschitz optimization problem is transformed into a
sequence of auxiliary problems to minimize the saw-tooth functions. It can be
shown that any limit point of the sequence of corresponding solutions is a global
minimum for the original Lipschitz function.

Minimization of the auxiliary functions is essentially a combinatorial problem,
and thus grows exponentially if all possibilities are tested. An analogous problem is
that of finding the intersection of n cones. Mladineo [9] suggested that to find this

150 L.M. BATTEN AND G. BELIAKOV

intersection it was sufficient to consider sets of neighbouring cones, resulting in a
major reduction in computations needed. A similar approach is taken in the present
article. By a careful analysis of the situation, we are able to significantly reduce the
number of possibilities tested.

2. The cutting angle method

The cutting angle method is based on results in abstract convexity [11]. The cutting
angle method arises, as do the Piyavskii and Mladineo methods [6, 9, 14], as a
special case of the generalized cutting plane method described in [11]. It involves a
construction of the saw-tooth cover of the objective function f(x), the max–min type
auxiliary function that always underestimates f(x). The maxima of the auxiliary
function are taken at known values of f(x).

The optization problem is then translated into a sequence of auxiliary problems
of minimization of the saw-tooth cover. At every iteration, the global minimum of
the auxiliary function is selected as the point where the objective function is
evaluated next. The sequence of solutions of the auxiliary problems converges to a
global minimum of f(x).

This abstract formulation permits the simultaneous consideration of problems of
arbitrary dimension, rather than a generalization of one-dimensional algorithms. Let
f(x) be a Lipschitz function defined on the unit simplex S. Consider the following
problem of global optimisation

f(x) → min subject to x [S .

It was shown in [1, 2, 11] that this problem can be reformulated as the global
optimization problem of the so-called Increasing Positively Homogeneous Function
of degree one, or IPH function, over the unit simplex. The class of IPH functions f

ndefined on R is1

n nh f : ;x, y [R x > y implies f(x)> f(y); ;x [R , l[R, l. 0:1 1

f(lx)5l f(x)j ,

nwhere R denotes the set of real vectors with non-negative components.1

Here, and in the remainder of this paper, vector inequality x > y means
dominance, i.e., ;i : x > y . Similarly x . y means strict dominance, i.e., ;i : x . y .i i i i

Examples of IPH functions are:
t(1) f(x)5 a x, a > 0;i

(2) f(x)5 ixi , p . 0;p
tj(3) f(x)5p x , J , I 5 h1, . . . , nj, t . 0, o t 5 1;j[J j j j[J j

]]
(4) f(x)5 [Ax, x], where A is a matrix with nonnegative entries and [? , ?] is theœ

nusual inner product in R .

The following result can be found in [11] (p. 96). Let g: S → R be a positive

FAST ALGORITHM FOR THE CUTTING ANGLE METHOD OF GLOBAL OPTIMIZATION 151

Lipschitz function defined on the unit simplex. Then it can be extended to a finite
nIPH function f(x) (of degree p > 1) on the cone R , which would coincide with1

g(x)1 c on S. I.e., f(x)5 g(x)1 c is an IPH function on the unit simplex with

c > 2L 2min g(x)
x[S

where L is the least Lipschitz constant of g in the L -norm. Since adding a constant1

does not affect the location of the minima, we can effectively minimize any
Lipschitz function on the unit simplex using this transformation with an appropriate
constant.

Thus, without loss of generality, we consider the problem of minimization of an
nIPH function f(x) over the unit simplex. For each x [R define the support vector1

f(x) f(x) f(x) f(x)S]D]]]l 5 5 , , . . . , .S Dx x x x1 2 n

Here we allow the components of the support vectors to take infinite values (if
x 5 0), which differs from the approach in [2], and we formally denote this by `.i

(This will not affect any mathematics of the method, we do this only for clarity of
presentation.)

mWe will use n vectors e 5 (0, . . . , 0, 1, 0, . . . , 0), with 1 in the mth position, and
m m mwe call the corresponding support vectors l 5 (f(e) /e), m 5 1, . . . , n, basis

vectors.
We consider a set of K > n support vectors (and hence K known values of the

k Kfunction f(x) at K distinct points), _ 5 hl j . Let also the first n support vectors bek51

the basis vectors (taken at the vertices of the simplex). This choice of support
vectors guarantees that the algorithm will locate all local (and hence global)
minimizers of the auxiliary function in the interior of the unit simplex.

The auxiliary function
kh (x)5max min l xK i i

k>K i51,...,n

is the saw-tooth cover of f(x). It always underestimates the value of f(x) : h (x)<K

f(x). Hence, l 5min h (x)<min f(x). On the other hand, the sequence of itsK x[S K x[S
`minima, hl j is increasing [2, 11], and converges to the global minimum of f(x)K K5n

as proved in [11].
We can formulate the cutting angle algorithm as follows [11].

ALGORITHM 1.
Step 0. (Initialisation)

m m m m(a) Take points e , m 5 1, . . . , n, and construct basis vectors l 5 (f(e) /e),
m 5 1, . . . , n.

k k(b) Define the function h (x)5max min l x 5max l x .n k<n i51,...,n i i k<n k k

(c) Set K 5 n.
Step 1. Find x*5 arg[min h (x)].x[S K

152 L.M. BATTEN AND G. BELIAKOV

KStep 2. Set K 5K 1 1 and x 5 x*.
k K KStep 3. Compute l 5 (f(x) /x). Define the function

k Kh (x)5max min l x 5maxhh (x), min l x j .K i i K21 i i
k<K i51,...,n i51,...,n

Go to Step 2.

A more general version of this algorithm is known as the f-bundle method, and its
convergence under very mild assumptions was proven in [10].

The crucial and most time consuming step of the Algorithm 1 is Step 1,
minimization of the auxiliary function. This problem is essentially of combinatorial
nature. Some properties of the auxiliary function (1) are studied in [2]. Among them
we note the following.

THEOREM 1 [2, 11]. Let x . 0 be a local minimizer of h (x) over the relativeK
k k k1 2 ninterior of S, riS 5 hx [S, x . 0j. Then there exists a subset L 5 hl , l , . . . , l j of

the set _, such that
k k k k 211 2 n i(1) x 5 (d /l , d /l , . . . , d /l) with d 5 (o 1/l) .1 2 n i

k ki(2) max min l /l 5 1.k<K i51,...,n i i
k km i(3) Either ;i : k 5 i, or 'm : k . n, l . l , ;i ±m.i m i i

The value of the auxiliary function at x is h (x)5 d.K

iREMARK. The authors of [4] also prove that ;i, k, 1< i < n, n 1 1< k <K : l <i
kl .i

In order to find the global minimum of the auxiliary function at Step 2 of the
algorithm, we need to examine all its local minima, and hence all combinations of
the support vectors that satisfy the conditions of the Theorem 1.

This process can be significantly accelerated (as reported in [2]) by noticing, that
Kh (x)5maxhh (x), min l x jK K21 i i

i51,...,n

Then, if we have already computed all the local minima of the auxiliary function
h (x) at the previous iteration, we only need to compute those minima that haveK21

Kbeen added by aggregation of the last support vector l . This means that we need to
Kexamine only those combinations of support vectors that include vector l (i.e., one

k Kiof l 5 l). The cutting angle algorithm of [2, 11], which we improve here, works
based on the above theorem, by examining all possible combinations of n support
vectors (out of K).

3. Combinatorial formulation

In this section we translate the crucial step of the cutting angle method, minimiza-
tion of the auxiliary function k (x), into an abstract combinatorial problem ofK

FAST ALGORITHM FOR THE CUTTING ANGLE METHOD OF GLOBAL OPTIMIZATION 153

selection of groups of n support vectors that satisfy certain conditions. Then we
formulate our main theorem, which is the basis of the fast algorithm presented in the
next section.

k K k nConsider a set of K support vectors _ 5 hl j , l [R . Let I denotek51 1

h1, 2, . . . , nj. From Theorem 1, the local minima of the auxiliary function h (x) areK
k k k1 2 ncombinations of n support vectors L 5 hl , l , . . . , l j that satisfy the following

conditions:
k ki j(1) ;i, j [I, i ± j : l , li i

ki(2) ;n [_ \L, 'i [I : l >n .i i

We call the subset L, which satisfies conditions (1) and (2) above, a valid
combination of support vectors.

To illustrate these conditions, interpret L as a n 3 n matrix, whose rows are
k k k1 2 nl , l , . . . , l [10]:

k k k1 1 1l l . . . l1 2 n
k k2 2l l . . .1 2L 5 .

. . .1 2
k kn nl . . . l1 n

kjWe will denote the elements of this matrix by K 5 l . Condition 1 implies thatji i

every element on the diagonal must be the smallest in its column, and condition 2
implies that for every vector n of _ that we take, not already in L, the diagonal of L

k k1 nis not dominated by n : ¬(diag(L)5 (l , . . . , l),n).1 n

As an example, consider the set _ 5 h(1, `, `), (`, 2, `), (`, `, 2), (2, 3, 4),
(3, 4, 3)j. List the combinations satisfying (1):

1 2 3 4 2 3 1 4 3L 5 hl , l , l j , L 5 hl , l , l j , L 5 hl , l , l j ,1 2 3

1 2 4 5 2 3 1 5 3L 5 hl , l , l j , L 5 hl , l , l j , L 5 hl , l , l j ,4 5 6

1 2 5 4 2 5 1 4 5L 5 hl , l , l j , L 5 hl , l , l j , L 5 hl , l , l j .7 8 9

Choose combinations satisfying (1) and (2):

1 ` ` 3 4 3
1 2 4 5 2 3L 5 hl , l , l j5 ` 2 ` , L 5 hl , l , l j5 ` 2 ` ,4 5H J H J

2 3 4 ` ` 2

1 ` ` 2 3 4
1 5 3 4 2 5L 5 hl , l , l j5 3 4 3 , L 5 hl , l , l j5 ` 2 ` ,6 8H J H J

` ` 2 3 4 3

1 ` `
1 4 5L 5 hl , l , l j5 2 3 4 .9 H J

3 4 3
KLet + denote the set of all valid combinations L of K support vectors satisfying

conditions (1) and (2):

154 L.M. BATTEN AND G. BELIAKOV

K k k k k1 2 n i+ 5 hL 5 hl , l , . . . , l j, l [_ : (1) ;i, j [I, i ± j : L , Lii ji

and (2) ;n [_ \L 'i [I : L >n jii i

The problem of finding local minima of h (x) is translated into the problem ofK
Klisting the elements of + . A simplistic approach is then:

Step 1. Construct all combinations L satisfying (1)
Step 2. Check the obtained combinations against (2).

The authors of [2, 11] then improve on this by taking into account the fact that all
K Kelements of + that do not involve l (i.e., minima of h (x)) do not need to beK21

recomputed, hence the algorithm takes the form:

ALGORITHM 2.
Step 0. (Initialisation)

m m m m(a) Take points e , m 5 1, . . . , n, and construct basis vectors l 5 (f(e) /e),
m 5 1, . . . , n.

k k(b) Define the function h (x)5max min l x 5max l x .n k<n i51,...,n i i k<n k k
K 1 2 n(c) Set K 5 n. Set + 5 hhl , l , . . . , l jj.

i 21(d) Calculate d 5 (o 1/l) .i51,...,n i

Step 1.
K(a) Retrieve all valid combinations L(i.e., set +).

K(b) Select L [+ with the smallest d.
Step 2.
(a) K 5K 1 1.
(b) Take x*5 d /diag (L) and evaluate f(x*).

K(c) Compute l 5 (f(x*) /x*). Define the function

k Kh (x)5max min l x 5maxhh (x), min l x j .K i i K21 i i
k<K i51,...,n i51,...,n

Step 3.
K21(a) Check + against (2) and remove those that fail (2).

K(b) Move the remaining combinations into + .
Step 4.

K(a) Construct all combinations L that involve l and satisfy (1).
k 21i(b) Calculate d 5 (o 1/l) for each such combination.i51,...,n i

K(c) Add these combinations to + .
(d) Go to Step 1.

It is clear that at Step 4, the number of possible combinations L that formally need
K 2 1 ato be constructed and checked at each iteration K is n(), where () denoten 2 1 b

binomial coefficients. Since O(n) operations are needed to test condition (1), the
2K 2 1complexity of the algorithm is O(()n). Of course, in practice, fewer operationsn 2 1

are needed: if, when forming L, condition 1 fails at half-way, there is no need to

FAST ALGORITHM FOR THE CUTTING ANGLE METHOD OF GLOBAL OPTIMIZATION 155

complete the construction of this L in order to discard it. Still, the complexity of
K21Step 4 is huge. The complexity of Step 3 of the alorithm is O(u+ uKn), where

K21 K21u+ u is the cardinality of + , i.e. the number of local minima of h (x).K21

Next we formulate our main result.

THEOREM 2. Let L satisfy conditions (1) and (2) and K . n. Then ; j [I, k ± jj
k k k k1 j21 j11 n'n [_ \L : L*5 hl , . . . , l , n, l , . . . , l j satisfies conditions (1) and (2 *):

kj *;u [_ \(l <L*) 'i [I : L > u .ii i

kjMoreover, diag(L*)< l .

kjNote that the difference between (2) and (2*) is that L* is not tested if u 5 l (i.e.,
condition (2*) is weaker than (2)).

n n 1 2 nProof. If K 5 n, + consists of only one element, + 5 hLj5 hhl , l , . . . , l jj and
_ \L 5 5.

kjLet K . n. _ \(l < L*)5_ \(L < n)5 (_ \L)\n.
For a fixed j, consider the following subsets of _ :

9 5 hu [(_ \L) : u < L and ;i [I, i ± j : u . L j ,1 j jj i ii

9 5 hu [(_ \L), ;i [I : u . L j and2 i ii

9 5 hu [(_ \L), 'i [I, i ± j : u <L j .3 i ii

Clearly, _ \L 59 <9 <9 . The set 9 is empty, because otherwise L would not1 2 3 2

satisfy condition (2). The set 9 is not empty, because it contains at least the jth1
j k j jjbasis vector l (note that since l ± l , l [⁄ L. See also Remark after Theorem 1).

Take n*[9 with the biggest jth component.1
k j k k1 j21 j11 nThen, by definition of 9 , L*5 hl , . . . , l , n*, l , . . . , l j, satisfies (1).1

Let us demonstrate that L* also satisfies (2*). Suppose, it does not. Then
'u [(_ \L)\n, ;i [I : L , u . Let us establish which part of _ \L u can beii i

chosen from. Firstly, u [⁄ 9 , because it does not fit the definition of 9 . Also3 3

* *u [⁄ 9 because this is how we chose n* : ;u [9 : u <n 5 L . Lastly, since 91 1 j j jj 2

is empty, no such u can be chosen from _ \L, and therefore from (_ \L)\n*, and
hence L* satisfies (2*).

k kj i*Finally, if not diag(L*)< l for some n*[9 , then L . l for some i. Since1 ii i

except in row j, L* coincides with L, and L satisfies (1), this is only possible when
kj* *i 5 j. Therefore we must have L 5n . l 5 L , but this implies that n*[9 ,jj j j jj 2

which is empty, hence contradiction. Proof completed.

4. Discussion

The first part of the theorem states that every valid combination of support vectors L

156 L.M. BATTEN AND G. BELIAKOV

has (at least one) predecessor—an ‘almost’ valid combination L*, which differs
kjfrom L by only one vector l . This combination L* would have been valid if not for

kjl (hence the condition (2*) and not (2)). The second part of the theorem establishes
the fact that predecessors of L cannot satisfy (2).

The major implication of Theorem 2 is that we can organize the set + of all
n 3 n matrices L satisfying conditions (1) and (2) at some stage into a directed
acyclic rooted graph, and hence are able to obtain all these elements by moving
from one node of the graph to another, rather than trying all possible combinations
of support vectors. Let us detail this process.

k nWe start with _ 5 hl j and will add one new support vector at a time.k51
n 1 2 n n11 n11+ 5 hL j5 hhl , l , . . . , l jj. Add a new vector l and obtain + . Then addroot

n12another vector and obtain + , etc. At every iteration K, K 5 n 1 1, . . . , we need
K Kto find only those elements of + , that contain the new vector l , since all the rest

K21are already in + .
K KBy Theorem 2, every element of L [+ , K . n, containing l at position j has a

K21 Kpredecessor L*[+ , such that diag(L*)< l . Then L is obtained from L* by
K n n11substituting the vector at position j with l . Let elements of + , + , . . . be nodes

of the graph and let the arcs connect the nodes with their predecessors. Theorem 2
guarantees that there is no node without a predecessor, except L , and hence everyroot

node can be reached from the root by repeatedly substituting the appropriate support
vectors. Hence the following corollary.

COROLLARY. Define the directed acycic graph G 5 (V, E), where V5+, E 5
K21 K K K21h(L*, L) : L*[+ \+ , L [+ \+ , K . n 1 1j. Then the root r 5 L isroot

connected to every vertex of the graph.

KThus, having proved that the whole set + of minima of the auxiliary function is on
the graph, to find the elements of this set we only need to examine the nodes of the
graph, and not all possible combinations of the support vectors.

We can interpret this in terms of the original optimization problem. At iteration
K21K 2 1, the auxiliary function h (x) has u+ u local minima. The objectiveK21

Kfunction is evaluated at a new point, and a new support vector l is added. The
auxiliary function is modified (and becomes h (x)). Some of the local minima ofK

h (x) will disappear, and some new minima will appear. Theorem 2 demonstrates,K21

that all the new minima of h (x) can be obtained from those minima of h (x) thatK K21

have disappeared from h (x), and also establishes the exact way the new minima canK

be found. Based on Theorem 2 we can design a fast algorithm that builds the
minima of h (x) from those of h (x).K K21

5. Fast algorithm

From the results of the previous section we derive the following new algorithm.

FAST ALGORITHM FOR THE CUTTING ANGLE METHOD OF GLOBAL OPTIMIZATION 157

ALGORITHM 3.
Step 0.
(a) Evaluate the objective function f(x) in the vertices of the unit simplex and

1 2 nconstruct n basis vectors l , l , . . . , l .
n 1 2 n(b) Build + 5 hL j5 hhl , l , . . . , l jj,root

i 21(c) Calculate d 5 (o 1/l) .i51,...,n i

(d) Take K 5 n.
Step 1.

K(a) Select L [+ with the smallest d.
(b) Take x*5 d /diag(L) and evaluate f(x*).
Step 2.
(a) Take K 5K 1 1.

K * * *(b) Form l 5 (f(x*) /x , f(x*) /x , . . . , f(x*) /x).1 2 n

Step 3.
K21 K 2(a) Select from + elements L with diag(L)< l . Call this set + .

K K21 2(b) + 5+ \+ .
Step 4.

2 k Ki(a) For every L [+ and every i 5 1, 2, . . . n replace l by l .
(b) Check these new combinations against condition (1) and if valid, calculate

k 21id 5 (o 1/l) for each of them.i51,...,n i
K(c) Add these valid combinations to + .

2Step 5. + 5 5. Go to Step 1.

The stopping criterion is as in [2, 11].
Let us estimate the complexity of the Algorithm 3. At every iteration K, Step 3

K21 2 2takes at most O(nu+ u) operations, and Step 4 takes O(n u+ u) operations.
K21u+ u is the number of local minima of the auxiliary function h (x), whichK21

depends on the objective function and K. This corresponds to the number of vertices
2 Kof the saw-tooth cover of f. u+ u is the number of local minima lost when adding l .

KHence, the complexity of constructing a set of valid combinations + is reduced
2 2 2K 2 1from O(n ()) to O(n u+ u). The complexity of checking combinations againstn 2 1

K21 K21condition (2) is reduced to O(Knu+ u) to O(nu+ u).
Algorithm 3 is superior to Algorithm 2 in all cases. Notice that both algorithms

perform exactly the same tests (conditions 1 and 2) on combinations of support
2vectors. However Algorithm 3 performs test of condition 1 on a small subset + ,

whereas Algorithm 2 performs this test on all possible combinations. Algorithm 3
K21 Kperforms test 2 on + using only one support vector l , whereas Algorithm 2

uses all K vectors. The only trivial case when both methods behave the same is
K 5 n 1 1.

6. Examples

We performed several tests of our algorithm against the original cutting angle

158 L.M. BATTEN AND G. BELIAKOV

algorithm from [2, 11]. We chose three IPH test functions (each in three, five and 10
variables), and three Lipschitz functions (two in three, five and 10 variables and the
third in two variables). The test IPH functions are defined in [2]

f (x)5 max ha x j1 min hb x j ,1 i i j j
i51,2,...,n j51,2,...,n

i
]a 5 21 ; b 5 (i 1 2)(n 2 i 1 2) , i 5 1, 2, . . . , n .i i2

i jf (x)5 max h[a , x]j1 min h[b , x]j, [a, x] denotes scalar products,2
i51,2,...,40 i51,2,...,20

i jcomponents of a , b are given by

20ii j]]]]a 5 ; i 5 1, 2, . . . , 40 ; b 5 5usin(j) sin(k)u ,k kk(11 ui 2 ku)
j 5 1, 2, . . . , 20 , k 5 1, 2, . . . , n .

ijf (x)5 max min [a , x] ,3
i51,...,20 j51,...n

10jij]]]]a 5 ucos(i 2 1)u , i 5 1, 2, . . . , 20 , j 5 1, 2, . . . , n ,k k(11 uk 2 ju)
k 5 1, 2, . . . , n .

Lipschitz test functions:
n

i 2f (x)5O minh0, 15ix 2 a i 2 b j , x [S4 i 1
i51

(n 1 1) /2n , if i 5 jia 5 b 5 4 , b 5 b 2 2/(n 2 1) ,Hn i i i211 /2n , otherwise ,

i 5 1, 2, . . . , n

Griewanks function:
n n x1 i2]]f (x)5 O x 2P cos 1 1 , d 5 200 ; 220< x < 20S]D5 i iŒd i51 ii51

Six-hump camel back function:
4x12 2 2 2S D]f (x)5 42 2.1x 1 x 1 x x 1 4(x 2 1)x , 22< x < 26 1 1 1 2 2 2 i3

Because Lipschitz functions 5 and 6 were defined in a hypercube rather than
nsimplex, the following coordinate transformation (from (n 1 1)-simplex to R) was

used

ln xi11
]]y 5 , i 5 1, . . . , n .i ln xi

This transformation is smooth one-to-one and in the interior of the unit simplex. Its
ninverse (from R to (n 1 1) unit simplex) was computed recursively as

FAST ALGORITHM FOR THE CUTTING ANGLE METHOD OF GLOBAL OPTIMIZATION 159

Table 1. Execution time (s) of the original and proposed algorithms; maximum number of
support vectors K 5 100

Test n 5 3 n 5 5 n 5 10
function

Algorithm Algorithm Algorithm Algorithm Algorithm Algorithm
2 3 2 3 2 3

f 0.37 0.01 24.66 0.01 208.9 0.061

f 0.32 0.01 21.98 0.01 156.81 0.072

f 0.33 0.01 97.09 0.02 1451.2 0.193

f 0.33 0.01 36.12 0.02 318.2 0.084

f 0.36 0.01 78.11 0.02 594.4 0.115

1
]x 5 ;1 Z

y 1x 5 x e ;2 1

y 1y1 2x 5 x e ;3 1

. . .
no yi51 ix 5 x e ,n11 1

in o yj51 jwhere the normalization constant Z 5 11o (e) .i51

Numerical experiments were performed on a Pentium III 750 Mhz processor. The
results are presented in Tables 1–3.

Table 2 warrants some comments. The dependency of the execution time on the
number of support vectors is presented graphically in Figure 1. It appears that for all

2.5choices of the number of variables n, this dependency is polynomial (|K). On the
logarithmic scale, all plots are parallel straight lines. This indicates that at least for
up to 40 variables, the new algorithm will be able to produce results in a reasonably

Table 2. Execution time (s) of the Algorithm 3 as a function of the number of support
vectors; test function f1

K n 5 5 n 5 10 n 5 20 n 5 30 n 5 40

100 0.01 0.06 0.07 0.11 0.15
300 0.22 0.89 1.43 2.32 3.18
500 1.13 3.66 4.97 7.10 9.98
700 2.63 8.82 10.60 14.72 20.48

1000 6.01 20.40 24.46 32.54 43.97
1300 11.02 37.04 49.63 58.74 78.18
1500 15.39 51.14 72.94 81.48 107.76
1700 20.58 67.72 101.65 108.82 143.54
2000 30.05 96.85 152.70 160.79 209.48

160 L.M. BATTEN AND G. BELIAKOV

Table 3. Execution time of the Algorithm 3 (s), number of support vectors taken, number
of minima of the auxiliary function and the precision of the solution for Lipschitz test cases.
Note that all minima found by the cutting angle method are within the radius of
convergence of local descent algorithms (e.g., Newton’s method, or discrete gradient
method [3]), which can be used to improve the precision

Function Global Minimum Execution Number of Number of
minimum found time (s) support minima of

vectors h (x)k

f , n 5 2 (0, 0) (20.025, 0.006) 0.821 2000 19455

f , n 5 3 (0, 0, 0) (0.012, 0.02, 20.018) 12.3 4500 121135

f , n 5 5 (0, 0, 0, 0, 0) (0.012, 20.033, 20.062, 1210 10000 3114435

20.031, 20.018)
f , n 5 2 (60.08985, (20.0882, 0.713) 6.13 4000 82526

70.71265

short and predictable time. Given the upper bound on the number of iterations,
computing time can be estimated from such a dependency.

7. Conclusion

We have propsed a substantially improved algorithm for the cutting angle method of
global optimisation. Our algorithm reduces the complexity of the crucial step of the
cutting angle method: minimization of the auxiliary max–min function. We
formulated this step as an abstract combinatorial problem, and have demonstrated
that all local minima of the auxiliary function are nodes of a directed graph with a

Figure 1. Execution time of Algorithm 3 as a function of the number of support vectors.

FAST ALGORITHM FOR THE CUTTING ANGLE METHOD OF GLOBAL OPTIMIZATION 161

single root. Listing the nodes of the graph is a much more efficient operation than
checking all possible combinations of support vectors, hence a dramatic improve-
ment in computation time.

References

[1] Andramonov, M., Rubinov, A. and Glover, B. (1999), Cutting Angle Method in Global
Optimization, Appl. Math. Lett. 12, 95–100.

[2] Bagirov, A. and Rubinov, A. (2000), Global Minimization of Increasing Positively
Homogeneous Functions over the Unit Simplex, Annals of Operations Res. 98, 171–187.

[3] Bagirov, A. (1999), Derivative-free Methods for Unconstrained Nonsmooth Optimization
and its Numerical Analysis, Journal Investigacao Operacional 19, 75–93.

[4] Bagirov, A. and Rubinov, A. (2001), Modified Versions of the Cutting Angle Method, in
Hadjisavvas, N. and Pardalos, P.M. (eds.), Convex Analysis and Global Optimization,Vol. 54,
Kluwer, Dordrecht.

[5] Floudas, C. (2000), Deterministic Global Optimization. Theory, Methods and Applications,
Kluwer, Dordrecht.

[6] Hansen, P. and Jaumard, B. (1995), Lipschitz Optimization, in Horst, R. and Pardalos, P.
(eds.), Handbook of Global Optimization, Kluwer, Dordrecht, 407–493.

[7] Hauptman, H. (1996), A Minimal Principle in the Phase Problem of X-Ray Crystallography,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 23, AMS.

[8] Maranas, C.D., Androulakis, I.P. and Floudas, C. (1996), A Deterministic Global Optimi-
zation Approach for the Protein Folding Problem, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science 23, AMS, 133–150.

[9] Mladineo, R. (1986), An algorithm for Finding the Global Maximum of a Multimodal,
Multivariate Function, Math. Progr. 34, 188–200.

[10] Pallachke, D. and Rolewicz, S. (1997), Foundations of Mathematical Optimzation (Convex
Analysis with Linearity), Kluwer, Dordrecht.

[11] Rubinov, A. (2000), Abstract Convexity and Global Optimization, Kluwer, Dordrecht.
[12] Rubinov, A. and Andramonov, M. (1999), Lipschitz Programming via Increasing Convex-

along-rays Functions, Optimization Meth. and Software 10, 763–781.
[13] Torn, A. and Zilinskas, A. (1989), Global Optimization, Springer, Heidelberg.
[14] Pijavski, S.A. (1972), An Algorithm for Finding the Absolute Extremum of a Function,

USSR Comput. Math. and Math. Phys. 2, 57–67.

